Jump to content

The World Economy Runs on GPS. It Needs a Backup Plan


tao

Recommended Posts

The small satellite network, which keeps global computer systems from freaking out, is shockingly vulnerable to all kinds of interference.

 

Duke Buckner was enjoying his breakfast at the Renaissance Tel Aviv Hotel, looking out on the city marina, on the day that time stuttered. Buckner oversees marketing and business development for Microsemi Corp., an American communications and defense contractor, and he gets a copy of emailed error reports for its equipment. It’s rare to get more than one in a given day. But on the morning of Jan. 26, 2016, they flooded his inbox. He forgot about breakfast.

 

The complaints had to do with Microsemi’s timing receivers for the Global Positioning System, the ubiquitous satellite navigation technology that was built for the U.S. military and has found its way into all our pockets. GPS isn’t just for maps. It’s also a kind of vast, spaceborne clock. Computers all over Earth use it to determine what time it is, down to billionths of a second. When there’s the slightest disagreement among those computers, things fall apart.

 

Microsemi’s timing receivers were frantically issuing error messages because of just such a discrepancy. “In normal operation, these things don’t generate alarms for years,” Buckner says. “So when one goes off a lot of times, people don’t know what to do.” Over the next 11 hours, cellphone towers lost their connections, U.S. police and fire stations reported communications errors, BBC radio signals were interrupted, and the telescope that tracks asteroids in Earth’s orbit went offline.

 

The root cause was a bug in the GPS network. When the U.S. Air Force, which operates the 31 satellites, decommissioned an older one and zeroed out its database values, it accidentally introduced tiny errors into the database, skewing the numbers. By the time Buckner’s inbox started blowing up, several satellites were transmitting bad timing data, running slow by 13.7 millionths of a second.

 

Each satellite carries several atomic clocks that are supposed to measure time by tracking how often the electrons at its core jump from one energy state to another. The satellites then transmit that data, along with their locations in orbit, toward Earth. On the ground, the GPS receiver in your phone relies on the consistency of those ultraprecise calculations to determine where you are, where the nearest decent bowl of pho is, and so on. (Yes, Einstein fans, the receiver accounts for the space clocks ticking a little slower than the ones on Earth.) ...

 

If interested, please read the rather long but informative article < here >.

Link to comment
Share on other sites


  • 2 weeks later...
  • Replies 1
  • Views 555
  • Created
  • Last Reply

Archived

This topic is now archived and is closed to further replies.

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...