Jump to content

Search the Community

Showing results for tags 'quantum physics'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • Site Related
    • News & Updates
    • Site / Forum Feedback
    • Member Introduction
  • News
    • General News
    • FileSharing News
    • Mobile News
    • Software News
    • Security & Privacy News
    • Technology News
  • Downloads
    • nsane.down
  • General Discussions & Support
    • Filesharing Chat
    • Security & Privacy Center
    • Software Chat
    • Mobile Mania
    • Technology Talk
    • Entertainment Exchange
    • Guides & Tutorials
  • Off-Topic Chat
    • The Chat Bar
    • Jokes & Funny Stuff
    • Polling Station

Found 2 results

  1. Surprisingly, the Schrödinger Equation — the fundamental equation of quantum mechanics — emerges while studying massive astronomical structures. Propagation of waves through an astrophysical disk can be understood using the Schrödinger Equation. Image credit: James Tuttle Keane, California Institute of Technology. Massive astronomical objects are frequently encircled by groups of smaller objects that revolve around them, like the planets around the Sun. For example, supermassive black holes are orbited by swarms of stars, which are themselves orbited by enormous amounts of rock, ice, and other space debris. Due to gravitational forces, these huge volumes of material form into flat, round disks. These disks, made up of countless individual particles orbiting en masse, can range from the size of our Solar System to many light-years across. Astrophysical disks of material generally do not retain simple circular shapes throughout their lifetimes. Instead, over millions of years, they slowly evolve to exhibit large-scale distortions, bending and warping like ripples on a pond. Exactly how these warps emerge and propagate has long puzzled astronomers, and even computer simulations have not offered a definitive answer, as the process is both complex and prohibitively expensive to model directly. Caltech planetary scientist Konstantin Batygin turned to an approximation scheme called perturbation theory to formulate a simple mathematical representation of disk evolution. This approximation, often used by astronomers, is based upon equations developed by mathematicians Joseph-Louis Lagrange and Pierre-Simon Laplace. Within the framework of these equations, the individual particles and pebbles on each particular orbital trajectory are mathematically smeared together. In this way, a disk can be modeled as a series of concentric wires that slowly exchange orbital angular momentum among one another. As an analogy, in the Solar System one can imagine breaking each planet into pieces and spreading those pieces around the orbit the planet takes around the Sun, such that the Sun is encircled by a collection of massive rings that interact gravitationally. The vibrations of these rings mirror the actual planetary orbital evolution that unfolds over millions of years, making the approximation quite accurate. Using this approximation to model disk evolution, however, had unexpected results. “When we do this with all the material in a disk, we can get more and more meticulous, representing the disk as an ever-larger number of ever-thinner wires,” Dr. Batygin said. “Eventually, you can approximate the number of wires in the disk to be infinite, which allows you to mathematically blur them together into a continuum. When I did this, astonishingly, the Schrödinger Equation emerged in my calculations.” The Schrödinger Equation is the foundation of quantum mechanics. It describes the non-intuitive behavior of systems at atomic and subatomic scales. One of these non-intuitive behaviors is that subatomic particles actually behave more like waves than like discrete particles — a phenomenon called wave-particle duality. This new work suggests that large-scale warps in astrophysical disks behave similarly to particles, and the propagation of warps within the disk material can be described by the same mathematics used to describe the behavior of a single quantum particle if it were bouncing back and forth between the inner and outer edges of the disk. The Schrödinger Equation is well studied, and finding that such a quintessential equation is able to describe the long-term evolution of astrophysical disks should be useful for scientists who model such large-scale phenomena. “Additionally, it is intriguing that two seemingly unrelated branches of physics can be governed by similar mathematics,” Dr. Batygin said. “This discovery is surprising because the Schrödinger Equation is an unlikely formula to arise when looking at distances on the order of light-years.” “The equations that are relevant to subatomic physics are generally not relevant to massive, astronomical phenomena. Thus, I was fascinated to find a situation in which an equation that is typically used only for very small systems also works in describing very large systems.” A paper reporting this work is published in the Monthly Notices of the Royal Astronomical Society. < Here >
  2. A team of researchers with Università degli Studi di Padova and the Matera Laser Ranging Observatory in Italy has conducted experiments that add credence to John Wheeler's quantum theory thought experiment. In their paper published on the open access site Science Advances, the group describes their experiment and what they believe it showed. The nature of light has proven to be one of the more difficult problems facing physicists. Nearly a century ago, experiments showed that light behaved like both a particle and a wave, but subsequent experiments seemed to show that light behaved differently depending on how it was tested, and weirdly, seemed to know how the researchers were testing it, changing its behavior as a result. Back in the late 1970s, physicist Johan Wheeler tossed around a thought experiment in which he asked what would happen if tests allowed researchers to change parameters after a photon was fired, but before it had reached a sensor for testing—would it somehow alter its behavior mid-course? He also considered the possibilities as light from a distant quasar made its way through space, being lensed by gravity. Was it possible that the light could somehow choose to behave as a wave or a particle depending on what scientists here on Earth did in trying to measure it? In this new effort, the team in Italy set out to demonstrate the ideas that Wheeler had proposed—but instead of measuring light from a quasar, they measured light bounced from a satellite back to Earth. The experiment consisted of shooting a laser beam at a beam splitter, which aimed the beam at a satellite traveling in low Earth orbit, which reflected it back to Earth. But as the light traveled back to Earth, the researchers had time to make a choice whether or not to activate a second beam splitter as the light was en route. Thus, they could test whether the light was able to sense what they were doing and respond accordingly. The team reports that the light behaved just as Wheeler had predicted—demonstrating either particle-like or wave-like behavior, depending on the behavior of those studying it. < Here >